
LA-UR-21-29077
Approved for public release; distribution is unlimited.

Title: AI Enhanced Discretizations for High-Fidelity Physics Simulations

Author(s): Brady, Peter T.
Livescu, Daniel
Sharan, Nek

Intended for: Report

Issued: 2021-09-15



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.



19/13/21 19/13/21Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

AI Enhanced Discretizations
for High-Fidelity Physics 
Simulations
Peter Brady; Daniel Livescu; Nek Sharan 
CCS-2



29/13/21

Introduction

• Non-dissipative schemes are preferred for high-fidelity turbulent flow and
aeroacoustics simulations

• Practical applications need stable boundary closures that ensure stability without
adding artificial (numerical) dissipation

Turbulent mixing layer Acoustic scatter

Acoustic source
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Boundary instabilities with non-dissipative schemes

Time-stable

Time stability. A method is time-stable if for homogenous boundary data and no 
source terms, there is a unique solution 𝐮(𝑡) satisfying

where 𝐾 is independent of ∆𝑥, f and 𝑡. f denotes the initial data.
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Sufficient conditions for time stabilityCause of instability

For a semidiscrete approximation
dv
dt

=Mv+b

v(0) = f(x),

M = system matrix b = boundary data
Lax stable: If for b = 0,
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Sufficient conditions for time-stability:
All eigenvalues of M have non-positive real part and the geometric
multiplicity of every eigenvalue with zero real part is equal to its
algebraic multiplicity
There exists a real symmetric positive definite matrix H such that
xTHMx  0 for all x ) M

T
H+HM is negative semidefinite
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Derivation of time-stable boundary stencils for centered schemes

The paper is organized as follows. Section 0.2 describes the controllable generation procedure proposed in this
study for derivation of time-stable boundary stencils. Section 0.3 provides a third- and a fourth-order time-stable
scheme derived using the proposed framework. Numerical results from the application of the derived boundary
stencils are discussed in section 0.4, and the conclusions are provided in section 0.5.

0.2 NN-based framework for time-stable boundary stencils

Deep generative models [48, 47] have had considerable success in image synthesis in recent years. They typically learn
the non-linear mapping from a latent distribution to the real data, and given an input noise (also called the latent
code), they can generate high-quality images of a certain class, e.g. people, birds, dogs. scenery etc. This class-
based image synthesis requires labeled training data and is referred to as conditional generation. Recent works (e.g.
[49, 51]) have also shown that by carefully editing the input noise, semantic information, e.g. the age, gender, hair
color etc. of facial images, can be individually targeted and modified. These procedures, referred to as controllable
generation, only change the target attribute in an image while maintaining the other image features. In this study,
we use the controllable generation concepts to modify the values of the boundary stencil coefficients for time stability.

The goal is to derive the entries of the derivative approximation D and the norm matrix H such that the time-
stability definition (Definition 1) is satisfied by the semi-discretization (3) while ensuring high-order accuracy and
discrete conservation. To make the discussion concrete, consider a general form of the operators D and H given by
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1

�x

2

666666666666664

d10 · · · · · · · · · · · · d1�

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

d0 · · · · · · · · · · · · d�

. . . . . . . . . . . . . . . . . . . . .
�cw · · · �c1 0 c1 · · · cw

. . . . . . . . . . . . . . . . . .

3

777777777777775

, (9)

H = �x

2

666666666664

h11 · · · · · · h1

...
. . . . . .

...
...

. . . . . .
...

h1 · · · · · · h

1
. . .

3

777777777775

, (10)

where  is the boundary stencil depth and � defines the maximum width of the boundary derivative stencil. ci are
the coefficients of the centered derivative approximation in the interior, which for a half-stencil width of w are given
by

ci = �
(�1)i (w!)2

i (w + i)! (w � i)!
for 1  i  w. (11)

More details on the structure of these operators for time stability and conservation with strong boundary conditions
(BCs) can be found in [36]. In (9) and (10), stencil coefficients for only the inflow boundary are shown because they
are the unknowns of interest here. The coefficients for outflow boundary that ensure time stability and conservation
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Derivation of time-stable boundary stencils for centered schemes
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with strong BCs are available in literature [36]. While the discussion here uses operators for solving partial differential
equations, the proposed approach should be applicable to any problem where the entries of a system matrix need to
be determined for stability.

A schematic of the overall procedure is shown in figure 1. The unknowns dij (1  i  , 0  j  �) and hij

(1  i, j  ) in (9) and (10), respectively, are reduced by imposing the accuracy and conservation conditions that
provide linear constraints (see e.g. [36]). � and  are chosen accordingly to allow sufficient number of free parameters.
The remaining free parameters, after satisfying the accuracy and conservation constraints, are denoted by p 2 Rk

and are determined from the generator. The generator can be regarded as a deterministic function g : Z ! P that
maps the m-dimensional latent space Z (from which the input noise vector z 2 Rm is sampled) to the k-dimensional
free parameter space P, where each sample p provides the remaining free parameters to construct the operators D

and H. From D and H, the symmetric matrix L = HM +M
T
H is constructed, see (8). For time stability, L must

be negative semi-definite and H must be positive definite. Both L and H are real symmetric matrices, and hence
their eigenvalues are real. Using the positive (unstable) eigenvalues of L and the negative eigenvalues of H, the cost
function is defined as

J = loss(⇤+
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+
L) + loss(⇤�

H
,�HI�

H
) =

n�1X

i=0

⇣
⇤+
L,i

� �LI
+
L,i

⌘2
+

n�1X

i=0

⇣
⇤�
H,i

� �HI
�
H,i

⌘2
, (12)

where ⇤+
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is non-zero and I
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= 0 otherwise. A small negative value
is chosen for �L and a small positive value is chosen for �H to drive the eigenvalues towards time stability. Here,
�L = �0.2 and �H = 0.2. n denotes the size of the matrices H and L, as discussed in the previous section.

The steps in NN training and input noise vector manipulation employed here are slightly different than the
conventional approach of NN training that requires a lot of data. The output of the NN here (see figure 1) are the
boundary stencil free parameters that make the semi-discretization (3) time stable. Numerous values of these free
parameters (that ensure time stability) are not available to serve as data for NN training, and hence the purpose of
this study. In the absence of training data, we use Theorem 2 to score the NN output via the cost function (12).
The free parameter values using this procedure are obtained in two steps.

In the first step, the input noise vector z is sampled from a normal distribution N (0, Im), where Im denotes an
identity matrix of size m, and the weights and biases of the hidden layers as well as the noise vector are updated in
the backward pass. The noise vector is updated using

znew = z+ ↵
@J

@z
, (13)

where ↵ 2 [0.01, 0.05] is chosen. Around 100 iterations (forward and backward passes) are carried out for each
sampled z, and fresh vectors are sampled until a J ⇡ O (10) is attained. The hidden layer weights and biases are
then fixed and z is further optimized in the second step.

In the second step, the hidden layer parameters are frozen at values corresponding to a cost function of O (10)

and the associated z is used as input to further optimize its value with a smaller learning rate in (13). Values of
↵ 2 [0.0005, 0.01] were used in the second step for the stencils reported in the next section. The two steps can be
described as a coarse search followed by a fine tuning of the input noise vector to minimize the cost function.

The framework discussed above and depicted in figure 1 was implemented in PyTorch, where torch.symeig was
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Controllable generation in image synthesis
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Original PoseAge GenderEyeglasses
Figure 1: Manipulating various facial attributes through varying the latent codes of a well-trained GAN model. The first column shows the
original synthesis from PGGAN [21], while each of the other columns shows the results of manipulating a specific attribute.

Abstract

Despite the recent advance of Generative Adversarial

Networks (GANs) in high-fidelity image synthesis, there

lacks enough understanding of how GANs are able to map a

latent code sampled from a random distribution to a photo-

realistic image. Previous work assumes the latent space

learned by GANs follows a distributed representation but

observes the vector arithmetic phenomenon. In this work,

we propose a novel framework, called InterFaceGAN, for

semantic face editing by interpreting the latent semantics

learned by GANs. In this framework, we conduct a detailed

study on how different semantics are encoded in the latent

space of GANs for face synthesis. We find that the latent

code of well-trained generative models actually learns a

disentangled representation after linear transformations.

We explore the disentanglement between various semantics

and manage to decouple some entangled semantics with

subspace projection, leading to more precise control of

facial attributes. Besides manipulating gender, age, expres-

sion, and the presence of eyeglasses, we can even vary the

face pose as well as fix the artifacts accidentally generated

by GAN models. The proposed method is further applied

to achieve real image manipulation when combined with

GAN inversion methods or some encoder-involved models.

Extensive results suggest that learning to synthesize faces

spontaneously brings a disentangled and controllable facial

attribute representation.
1

1. Introduction

Generative Adversarial Networks (GANs) [15] have
significantly advanced image synthesis in recent years. The
rationale behind GANs is to learn the mapping from a latent
distribution to the real data through adversarial training.
After learning such a non-linear mapping, GAN is capable
of producing photo-realistic images from randomly sam-
pled latent codes. However, it is uncertain how semantics
originate and are organized in the latent space. Taking face
synthesis as an example, when sampling a latent code to
produce an image, how the code is able to determine various
semantic attributes (e.g., gender and age) of the output face,
and how these attributes are entangled with each other?

1Code and models are available at this link.
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with strong BCs are available in literature [36]. While the discussion here uses operators for solving partial differential
equations, the proposed approach should be applicable to any problem where the entries of a system matrix need to
be determined for stability.

A schematic of the overall procedure is shown in figure 1. The unknowns dij (1  i  , 0  j  �) and hij

(1  i, j  ) in (9) and (10), respectively, are reduced by imposing the accuracy and conservation conditions that
provide linear constraints (see e.g. [36]). � and  are chosen accordingly to allow sufficient number of free parameters.
The remaining free parameters, after satisfying the accuracy and conservation constraints, are denoted by p 2 Rk

and are determined from the generator. The generator can be regarded as a deterministic function g : Z ! P that
maps the m-dimensional latent space Z (from which the input noise vector z 2 Rm is sampled) to the k-dimensional
free parameter space P, where each sample p provides the remaining free parameters to construct the operators D

and H. From D and H, the symmetric matrix L = HM +M
T
H is constructed, see (8). For time stability, L must

be negative semi-definite and H must be positive definite. Both L and H are real symmetric matrices, and hence
their eigenvalues are real. Using the positive (unstable) eigenvalues of L and the negative eigenvalues of H, the cost
function is defined as
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is chosen for �L and a small positive value is chosen for �H to drive the eigenvalues towards time stability. Here,
�L = �0.2 and �H = 0.2. n denotes the size of the matrices H and L, as discussed in the previous section.

The steps in NN training and input noise vector manipulation employed here are slightly different than the
conventional approach of NN training that requires a lot of data. The output of the NN here (see figure 1) are the
boundary stencil free parameters that make the semi-discretization (3) time stable. Numerous values of these free
parameters (that ensure time stability) are not available to serve as data for NN training, and hence the purpose of
this study. In the absence of training data, we use Theorem 2 to score the NN output via the cost function (12).
The free parameter values using this procedure are obtained in two steps.

In the first step, the input noise vector z is sampled from a normal distribution N (0, Im), where Im denotes an
identity matrix of size m, and the weights and biases of the hidden layers as well as the noise vector are updated in
the backward pass. The noise vector is updated using

znew = z+ ↵
@J

@z
, (13)

where ↵ 2 [0.01, 0.05] is chosen. Around 100 iterations (forward and backward passes) are carried out for each
sampled z, and fresh vectors are sampled until a J ⇡ O (10) is attained. The hidden layer weights and biases are
then fixed and z is further optimized in the second step.

In the second step, the hidden layer parameters are frozen at values corresponding to a cost function of O (10)

and the associated z is used as input to further optimize its value with a smaller learning rate in (13). Values of
↵ 2 [0.0005, 0.01] were used in the second step for the stencils reported in the next section. The two steps can be
described as a coarse search followed by a fine tuning of the input noise vector to minimize the cost function.

The framework discussed above and depicted in figure 1 was implemented in PyTorch, where torch.symeig was
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facial attributes. Besides manipulating gender, age, expres-

sion, and the presence of eyeglasses, we can even vary the

face pose as well as fix the artifacts accidentally generated

by GAN models. The proposed method is further applied

to achieve real image manipulation when combined with

GAN inversion methods or some encoder-involved models.

Extensive results suggest that learning to synthesize faces

spontaneously brings a disentangled and controllable facial

attribute representation.
1

1. Introduction

Generative Adversarial Networks (GANs) [15] have
significantly advanced image synthesis in recent years. The
rationale behind GANs is to learn the mapping from a latent
distribution to the real data through adversarial training.
After learning such a non-linear mapping, GAN is capable
of producing photo-realistic images from randomly sam-
pled latent codes. However, it is uncertain how semantics
originate and are organized in the latent space. Taking face
synthesis as an example, when sampling a latent code to
produce an image, how the code is able to determine various
semantic attributes (e.g., gender and age) of the output face,
and how these attributes are entangled with each other?

1Code and models are available at this link.
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with strong BCs are available in literature [36]. While the discussion here uses operators for solving partial differential
equations, the proposed approach should be applicable to any problem where the entries of a system matrix need to
be determined for stability.

A schematic of the overall procedure is shown in figure 1. The unknowns dij (1  i  , 0  j  �) and hij

(1  i, j  ) in (9) and (10), respectively, are reduced by imposing the accuracy and conservation conditions that
provide linear constraints (see e.g. [36]). � and  are chosen accordingly to allow sufficient number of free parameters.
The remaining free parameters, after satisfying the accuracy and conservation constraints, are denoted by p 2 Rk

and are determined from the generator. The generator can be regarded as a deterministic function g : Z ! P that
maps the m-dimensional latent space Z (from which the input noise vector z 2 Rm is sampled) to the k-dimensional
free parameter space P, where each sample p provides the remaining free parameters to construct the operators D

and H. From D and H, the symmetric matrix L = HM +M
T
H is constructed, see (8). For time stability, L must

be negative semi-definite and H must be positive definite. Both L and H are real symmetric matrices, and hence
their eigenvalues are real. Using the positive (unstable) eigenvalues of L and the negative eigenvalues of H, the cost
function is defined as

J = loss(⇤+
L ,�LI

+
L) + loss(⇤�

H
,�HI�

H
) =

n�1X

i=0

⇣
⇤+
L,i

� �LI
+
L,i

⌘2
+

n�1X

i=0

⇣
⇤�
H,i

� �HI
�
H,i

⌘2
, (12)

where ⇤+
L = ⇤L+|⇤L|

2 = diag
⇣

⇤+
L,0 · · · ⇤+

L,n�1

⌘
with ⇤L denoting a diagonal matrix containing the eigenvalues

of L and ⇤�
H

= ⇤H�|⇤H |
2 = diag

⇣
⇤�
H,0 · · · ⇤�

H,n�1

⌘
with ⇤H denoting a diagonal matrix containing the

eigenvalues of H. I+L is a diagonal matrix with entries I
+
L,i

= 1 if ⇤+
L,i

is non-zero and I
+
L,i

= 0 otherwise. Similarly,
I�
H

is a diagonal matrix with entries I
�
H,i

= 1 if ⇤�
H,i

is non-zero and I
�
H,i

= 0 otherwise. A small negative value
is chosen for �L and a small positive value is chosen for �H to drive the eigenvalues towards time stability. Here,
�L = �0.2 and �H = 0.2. n denotes the size of the matrices H and L, as discussed in the previous section.

The steps in NN training and input noise vector manipulation employed here are slightly different than the
conventional approach of NN training that requires a lot of data. The output of the NN here (see figure 1) are the
boundary stencil free parameters that make the semi-discretization (3) time stable. Numerous values of these free
parameters (that ensure time stability) are not available to serve as data for NN training, and hence the purpose of
this study. In the absence of training data, we use Theorem 2 to score the NN output via the cost function (12).
The free parameter values using this procedure are obtained in two steps.

In the first step, the input noise vector z is sampled from a normal distribution N (0, Im), where Im denotes an
identity matrix of size m, and the weights and biases of the hidden layers as well as the noise vector are updated in
the backward pass. The noise vector is updated using

znew = z+ ↵
@J

@z
, (13)

where ↵ 2 [0.01, 0.05] is chosen. Around 100 iterations (forward and backward passes) are carried out for each
sampled z, and fresh vectors are sampled until a J ⇡ O (10) is attained. The hidden layer weights and biases are
then fixed and z is further optimized in the second step.

In the second step, the hidden layer parameters are frozen at values corresponding to a cost function of O (10)

and the associated z is used as input to further optimize its value with a smaller learning rate in (13). Values of
↵ 2 [0.0005, 0.01] were used in the second step for the stencils reported in the next section. The two steps can be
described as a coarse search followed by a fine tuning of the input noise vector to minimize the cost function.

The framework discussed above and depicted in figure 1 was implemented in PyTorch, where torch.symeig was
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Figure 1: Manipulating various facial attributes through varying the latent codes of a well-trained GAN model. The first column shows the
original synthesis from PGGAN [21], while each of the other columns shows the results of manipulating a specific attribute.

Abstract

Despite the recent advance of Generative Adversarial

Networks (GANs) in high-fidelity image synthesis, there

lacks enough understanding of how GANs are able to map a

latent code sampled from a random distribution to a photo-

realistic image. Previous work assumes the latent space

learned by GANs follows a distributed representation but

observes the vector arithmetic phenomenon. In this work,

we propose a novel framework, called InterFaceGAN, for

semantic face editing by interpreting the latent semantics

learned by GANs. In this framework, we conduct a detailed

study on how different semantics are encoded in the latent

space of GANs for face synthesis. We find that the latent

code of well-trained generative models actually learns a

disentangled representation after linear transformations.

We explore the disentanglement between various semantics

and manage to decouple some entangled semantics with

subspace projection, leading to more precise control of

facial attributes. Besides manipulating gender, age, expres-

sion, and the presence of eyeglasses, we can even vary the

face pose as well as fix the artifacts accidentally generated

by GAN models. The proposed method is further applied

to achieve real image manipulation when combined with

GAN inversion methods or some encoder-involved models.

Extensive results suggest that learning to synthesize faces

spontaneously brings a disentangled and controllable facial

attribute representation.
1

1. Introduction

Generative Adversarial Networks (GANs) [15] have
significantly advanced image synthesis in recent years. The
rationale behind GANs is to learn the mapping from a latent
distribution to the real data through adversarial training.
After learning such a non-linear mapping, GAN is capable
of producing photo-realistic images from randomly sam-
pled latent codes. However, it is uncertain how semantics
originate and are organized in the latent space. Taking face
synthesis as an example, when sampling a latent code to
produce an image, how the code is able to determine various
semantic attributes (e.g., gender and age) of the output face,
and how these attributes are entangled with each other?

1Code and models are available at this link.
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with strong BCs are available in literature [36]. While the discussion here uses operators for solving partial differential
equations, the proposed approach should be applicable to any problem where the entries of a system matrix need to
be determined for stability.

A schematic of the overall procedure is shown in figure 1. The unknowns dij (1  i  , 0  j  �) and hij

(1  i, j  ) in (9) and (10), respectively, are reduced by imposing the accuracy and conservation conditions that
provide linear constraints (see e.g. [36]). � and  are chosen accordingly to allow sufficient number of free parameters.
The remaining free parameters, after satisfying the accuracy and conservation constraints, are denoted by p 2 Rk

and are determined from the generator. The generator can be regarded as a deterministic function g : Z ! P that
maps the m-dimensional latent space Z (from which the input noise vector z 2 Rm is sampled) to the k-dimensional
free parameter space P, where each sample p provides the remaining free parameters to construct the operators D

and H. From D and H, the symmetric matrix L = HM +M
T
H is constructed, see (8). For time stability, L must

be negative semi-definite and H must be positive definite. Both L and H are real symmetric matrices, and hence
their eigenvalues are real. Using the positive (unstable) eigenvalues of L and the negative eigenvalues of H, the cost
function is defined as

J = loss(⇤+
L ,�LI

+
L) + loss(⇤�

H
,�HI�

H
) =

n�1X

i=0

⇣
⇤+
L,i

� �LI
+
L,i

⌘2
+

n�1X

i=0

⇣
⇤�
H,i

� �HI
�
H,i

⌘2
, (12)

where ⇤+
L = ⇤L+|⇤L|

2 = diag
⇣

⇤+
L,0 · · · ⇤+

L,n�1

⌘
with ⇤L denoting a diagonal matrix containing the eigenvalues

of L and ⇤�
H

= ⇤H�|⇤H |
2 = diag

⇣
⇤�
H,0 · · · ⇤�

H,n�1

⌘
with ⇤H denoting a diagonal matrix containing the

eigenvalues of H. I+L is a diagonal matrix with entries I
+
L,i

= 1 if ⇤+
L,i

is non-zero and I
+
L,i

= 0 otherwise. Similarly,
I�
H

is a diagonal matrix with entries I
�
H,i

= 1 if ⇤�
H,i

is non-zero and I
�
H,i

= 0 otherwise. A small negative value
is chosen for �L and a small positive value is chosen for �H to drive the eigenvalues towards time stability. Here,
�L = �0.2 and �H = 0.2. n denotes the size of the matrices H and L, as discussed in the previous section.

The steps in NN training and input noise vector manipulation employed here are slightly different than the
conventional approach of NN training that requires a lot of data. The output of the NN here (see figure 1) are the
boundary stencil free parameters that make the semi-discretization (3) time stable. Numerous values of these free
parameters (that ensure time stability) are not available to serve as data for NN training, and hence the purpose of
this study. In the absence of training data, we use Theorem 2 to score the NN output via the cost function (12).
The free parameter values using this procedure are obtained in two steps.

In the first step, the input noise vector z is sampled from a normal distribution N (0, Im), where Im denotes an
identity matrix of size m, and the weights and biases of the hidden layers as well as the noise vector are updated in
the backward pass. The noise vector is updated using

znew = z+ ↵
@J

@z
, (13)

where ↵ 2 [0.01, 0.05] is chosen. Around 100 iterations (forward and backward passes) are carried out for each
sampled z, and fresh vectors are sampled until a J ⇡ O (10) is attained. The hidden layer weights and biases are
then fixed and z is further optimized in the second step.

In the second step, the hidden layer parameters are frozen at values corresponding to a cost function of O (10)

and the associated z is used as input to further optimize its value with a smaller learning rate in (13). Values of
↵ 2 [0.0005, 0.01] were used in the second step for the stencils reported in the next section. The two steps can be
described as a coarse search followed by a fine tuning of the input noise vector to minimize the cost function.

The framework discussed above and depicted in figure 1 was implemented in PyTorch, where torch.symeig was
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with strong BCs are available in literature [36]. While the discussion here uses operators for solving partial differential
equations, the proposed approach should be applicable to any problem where the entries of a system matrix need to
be determined for stability.
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and are determined from the generator. The generator can be regarded as a deterministic function g : Z ! P that
maps the m-dimensional latent space Z (from which the input noise vector z 2 Rm is sampled) to the k-dimensional
free parameter space P, where each sample p provides the remaining free parameters to construct the operators D

and H. From D and H, the symmetric matrix L = HM +M
T
H is constructed, see (8). For time stability, L must

be negative semi-definite and H must be positive definite. Both L and H are real symmetric matrices, and hence
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is chosen for �L and a small positive value is chosen for �H to drive the eigenvalues towards time stability. Here,
�L = �0.2 and �H = 0.2. n denotes the size of the matrices H and L, as discussed in the previous section.

The steps in NN training and input noise vector manipulation employed here are slightly different than the
conventional approach of NN training that requires a lot of data. The output of the NN here (see figure 1) are the
boundary stencil free parameters that make the semi-discretization (3) time stable. Numerous values of these free
parameters (that ensure time stability) are not available to serve as data for NN training, and hence the purpose of
this study. In the absence of training data, we use Theorem 2 to score the NN output via the cost function (12).
The free parameter values using this procedure are obtained in two steps.

In the first step, the input noise vector z is sampled from a normal distribution N (0, Im), where Im denotes an
identity matrix of size m, and the weights and biases of the hidden layers as well as the noise vector are updated in
the backward pass. The noise vector is updated using

znew = z+ ↵
@J

@z
, (13)

where ↵ 2 [0.01, 0.05] is chosen. Around 100 iterations (forward and backward passes) are carried out for each
sampled z, and fresh vectors are sampled until a J ⇡ O (10) is attained. The hidden layer weights and biases are
then fixed and z is further optimized in the second step.

In the second step, the hidden layer parameters are frozen at values corresponding to a cost function of O (10)

and the associated z is used as input to further optimize its value with a smaller learning rate in (13). Values of
↵ 2 [0.0005, 0.01] were used in the second step for the stencils reported in the next section. The two steps can be
described as a coarse search followed by a fine tuning of the input noise vector to minimize the cost function.

The framework discussed above and depicted in figure 1 was implemented in PyTorch, where torch.symeig was
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Eigenvalue spectrum from the derived schemes

n
2� 4� 2 scheme 3� 6� 3 scheme

log10 k"k2 Rate log10 k"k1 Rate log10 k"k2 Rate log10 k"k1 Rate
20 -1.973422 -1.703554 -2.279161 -1.948476
40 -2.916809 3.134 -2.574815 2.894 -3.449783 3.889 -3.196234 4.145
80 -3.835924 3.053 -3.486709 3.029 -4.631867 3.927 -4.366281 3.887
160 -4.745814 3.023 -4.384746 2.983 -5.826623 3.969 -5.557024 3.956
320 -5.651926 3.010 -5.282615 2.983 -7.026841 3.987 -6.756342 3.984
640 -6.556365 3.004 -6.197129 3.038 -8.229245 3.994 -7.958516 3.994

Table 2: L2� and L1�norm of the error and convergence rates for the two schemes. Error calculations performed
at tf = 1.0.

0.5 Conclusions

A controllable generation approach using deep neural networks is proposed for derivation of time-stable high-order
finite-difference schemes that impose boundary conditions strongly (or exactly). The proposed approach is general
in that it can be applied to determine system matrix coefficients for stability in any application. The generation
procedure does not require training data, instead the node weights and biases of the neural network are trained using
a cost function based on the eigenvalues of the output. A global third- and fourth-order scheme is derived using the
proposed approach and their stability and accuracy are evaluated for an inviscid scalar hyperbolic problem.
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Numerical results: Inviscid Burgers’ equation
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Stability

Let u(t) =
h
u0(t) · · · · · · un(t)

iT
and v(t) =

h
v0(t) · · · · · · vn(t)

iT
denote the grid function,

assuming a spatial discretization of the above system with n + 1 grid points. A semi-discretization of
(55)-(58) using strong boundary conditions is given by

dw

dt
= �Dw, (59)

where w(t) =
h
ũ(t) ṽ(t)

iT
with ũ(t) =

h
u1(t) · · · · · · un(t)

iT
and ṽ(t) =

h
v0(t) · · · · · · vn�1(t)

iT
.

The derivative operator, D, is given by

D =

"
H 0

0 H
#

#�1 "
Q̃ Q0

�Q
#
0 �Q̃

#

#
= H�1Q,

where Q̃ and Q0 are as described in (10) and (30), respectively, and the superscript # denotes the matrix
transformation (32). The off-diagonal entries of Q, involving Q0, apply the boundary conditions (58)
strongly.

As mentioned earlier, existing high-order central difference schemes fail to be stable for this problem
when solved with strong BCs. Figure 2(a) shows the eigenvalue spectrum of the system matrix, given by
�D in (59), for various high-order schemes from literature. All schemes exhibit eigenvalues with positive
real part, therefore, the numerical solution grows non-physically in a long-time simulation, as shown by the
solution error (") plotted in Figure 2(b).

Figure 3 shows the the eigenvalue spectrum of the system matrix for various number of grid points using
the EBC schemes that are time-stable for this problem, i.e., where the eigenvalues lie in strict left half of
the complex plane. The 1� 2� 1, 2� 4� 2, 3� 4� 3, 3� 6� 3 (B), 4� 6� 4 (B) and 5� 6� 5 (B) schemes
are time-stable. The (A) schemes, as discussed in Sections 3.4, 3.5, and 3.6, and whose eigenvalue spectra
are shown in Figure 4, exhibit eigenvalues with positive real part and, hence, they are not time-stable for
this problem.

Table 2 shows the L2� and L1�norm of the solution error, denoted by ", and the respective convergence
rates from the time-stable schemes for this problem. All schemes converge with at least pb + 1 global order-
of-accuracy, except the 4�6�4 scheme that shows an accuracy between 4 and 5. The n = 640 values for the
5 � 6 � 5 (B) scheme are omitted on account of individual grid point errors approaching machine precision
for such resolutions.

4.3. Inviscid Burgers’ equation
Consider the inviscid Burgers’ equation with a source term,

@U

@t
+

@

@x

✓
U

2

2

◆
= fU . 0  x  1, t � 0, (60)

The method of manufactured solutions [30] is employed to perform long-time simulations to assess the
stability and accuracy of the derived schemes. The source term prevents solution discontinuities. The
solution is assumed to be

U (x, t) = sin 2⇡ (x � t) + C, (61)

where C = 1.0 is a constant. (61) prescribes the initial and boundary data, and the source term is given by

fU (x, t) = ⇡ sin 4⇡ (x � t) . (62)

The solution (61) is non-negative in the domain at all times, therefore, the boundary condition U(0, t) =

sin 2⇡ (�t) + C makes the problem well-posed.
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The method of manufactured solutions [30] is employed to perform long-time simulations to assess the
stability and accuracy of the derived schemes. The source term prevents solution discontinuities. The
solution is assumed to be

U (x, t) = sin 2⇡ (x � t) + C, (61)

where C = 1.0 is a constant. (61) prescribes the initial and boundary data, and the source term is given by

fU (x, t) = ⇡ sin 4⇡ (x � t) . (62)

The solution (61) is non-negative in the domain at all times, therefore, the boundary condition U(0, t) =

sin 2⇡ (�t) + C makes the problem well-posed.
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